
Каталог продукции

Продукция АО «ЦНИИ «Электрон»

Гибридные и сочлененные фотоэлектронные приборы

Комплексированные фотоэлектронные приборы

* ФЭП – фотоэлектронные приборы

ФПЗС – фотоэлектронные приборы с зарядовой связью

ЭОП – электронно-оптический преобразователь

КМОП – комплементарная структура металл-оксид-полупроводник

Содержание

2 АО «ЦНИИ «Электрон»

Вакуумные фотоэлектронные приборы

Рентгеновская трубка с фотокатодом	8
Радиационно-стойкий видикон ЛИ501-1МК	10
Фотоумножители	
Спектрометрический фотоэлектронный умножитель ФЭУ-143-1	12
Фотоэлектронный умножитель ФЭУ-175	14
Спектрометрический фотоэлектронный умножитель ФЭУ-176	16
Спектрометрический фотоэлектронный умножитель ФЭУ-183, ФЭУ-183-1	18
Фотоэлектронный умножитель ФЭУ-186, ФЭУ-186-1	20
Радиационно-стойкий и магнитоустойчивый фотоэлектронный умножитель ФЭУ-187, ФЭУ-187-1	22
Магнитоустойчивый фотоэлектронный умножитель ФЭУ-188	24
Магнитоустойчивый фотоэлектронный умножитель ФЭV-тетрол	26

Твердотельные фотоэлектронные приборы

Матричные ФПЗС

Матричный фоточувствительный прибор с переносом заряда ФППЗ 26М	30
Матричный фоточувствительный прибор с переносом заряда ФППЗ 28М	32
Матричный фоточувствительный прибор с зарядовой связью ФППЗ 33М	34
Матричный фоточувствительный прибор с зарядовой связью ФППЗ 34М	36
Матричный фоточувствительный прибор с кадровым переносом заряда «Квадро-Т»	38
Крупногабаритный матричный фоточувствительный прибор с переносом заряда «Квадро»	40

■ +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU

Каталог продукции

Твердотельные фотоэлектронные приборы

Линейные ФПЗС

Линейный фоточувствительный прибор с переносом заряда ФППЗ 6Л	42
Линейный фоточувствительный прибор с переносом заряда ФППЗ 8Л	44
Линейный фоточувствительный прибор с переносом заряда ФППЗ 29Л	46
Линейный фоточувствительный прибор с переносом заряда ФППЗ 30Л	48
Линейный фоточувствительный прибор с переносом заряда ФППЗ 32Л	50
Линейные ФППЗ с числом пикселей до 12000	52
Позиционно-чувствительный датчик ФУР 42М	54

Гибридные и сочлененные фотоэлектронные приборы

Высокочувствительный гибридный гелевизионный прибор на основе электрон-чувствительного ПЗС для ближнего ИК диапазона	58
Высокочувствительный гибридный гелевизионный прибор на основе электрон-чувствительного ПЗС для УФ диапазона и ФПУ на его основе	60
Гибридный многоканальный фотоприемник	62
Высокочувствительные малогабаритные модульные телевизионные приборы ФМТП 1-1, ФМТП 1-2	64
Сверхвысокочувствительные широкоформатные модульные телевизионные приборы ФМТП 3-1, ФМТП 3-2	66

4

Комплексированные фотоэлектронные приборы

Фотоприемное устройство ФПУ-1024М	72
Фотоприемное устройство ФПУ-1М	74
Фотоприемное устройство ФПУ-2М	76
Унифицированные высокочувствительные фотоприемные модули ФПМ	78
Солнечно-слепые фотоприемные модули ФПУ-4А, ФПУ-4П	80
Дактилоскопический многофункциональный электронный сканер ЛС 21	82

Перспективные направления

Минимодуль линеиной ПЗС камеры	84
Матричный ФПУ ближнего и среднего ИК диапазонов с числом пикселей 1024×1024 на основе фоточувствительных диодов Шоттки	86
Технология изготовления широкоформатной фотоприемной матрицы для космических систем	87
Разработка высокочувствительной матрицы ФППЗ с умножением электронов на кристалле для перспективных оптико- электронных систем обнаружения целей	88
Разработка фотоприемников на основе КМОП-матриц	89

■ +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU

Каталог продукции

Вакуумные фотоэлектронные приборы

Рентгеновская трубка с фотокатодом

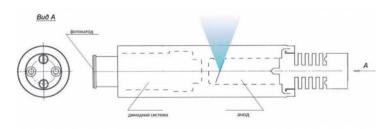
Рентгеновская трубка с холодным катодом (ФРТ) использует встроенный фотоэлектронный умножитель в качестве источника электронов взамен традиционных катодов.

Рентгеновское излучение регулируется величиной светового потока, падающего на фотокатод ФЭУ. В качестве источника света может использоваться светодиод, лазер, лампа или любой другой источник.

Конструктивное оформление:

Изготовлены образцы ФРТ диаметром 44 мм без бериллиевого окна и 55 мм с бериллиевым окном диаметром 12 мм. Материалы анода: медь, серебро, вольфрам.

Применение

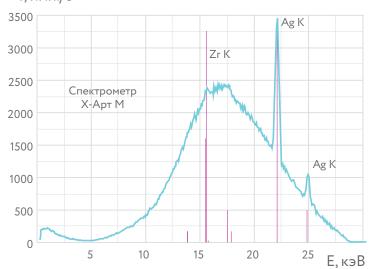

- медицина (импульсные рентгеновские томографы);
- биология;
- рентгеновская дальняя космическая связь;
- аппаратура рентгеноструктурного и рентгеноспектрального анализа.

Достоинства

- возможность работы в непрерывном и импульсном режимах;
- в импульсном режиме обеспечивает 100% модуляцию в диапазоне частот от 100Гц до 1МГц со скважностью 2 (коэффициент заполнения 0,5);
- безинерционность;
- интенсивность рентгеновского излучения может легко регулироваться током светодиода;
- чистота спектра в результате использования фотокатода (холодный катод) в качестве источника электронов;
- применение разных материалов фотокатода ФЭУ позволяет получать ФРТ с управлением световым потоком различного диапазона спектра от УФ до ближнего ИК;
- возможность получения анодного тока до 1 мА при низких анодных напряжениях (актуально в варианте с бериллиевым окном);
- возможность использовать один и тот же прибор для получения мягкого рентгеновского излучения (при низких напряжениях) и излучения средней жесткости (при напряжениях до 100 кВ).

Патент на ПМ №123222 приоритет от 04.06.2012. Совместная разработка с ЗАО «СВЕТЛАНА-РЕНТГЕН».

Схема фоторентгеновской трубки


Основные параметры	без бериллиевого окна	с бериллиевым окном
Диаметр прибора, мм	44	55
Длина прибора (без делителя напряжений динодов ФЭУ), мм	220	290
Отношение сигнал / шум при рабочей облученности, раз	>10	>10
Размер фокуса, мм	0,8×1,2	1,0×2,0
Напряжение, кВ	3÷40	3÷100
Анодный ток, мА	0,01÷1,0	0,01÷1,0
Быстродействие, с	<1.10-7	<1.10-7
Мощность, Вт	≤ 40	≤100
Диапазон частот (в им- пульсном режиме), кГц	0÷1000	0÷1000

Перечень наиболее полных характеристик может быть представлен по запросу Заказчика.

Спектр рентгеновского излучения

Спектр ФРТ (анодное напряжение 29 кВ, ток 250 мкА). Линия Zr K соответствует материалу стекла. Анод серебряный.

I, имп./с

• +7(812) 297-82-49 (доб. 394) │ info@niielectron.ru │ NIIELECTRON.RU

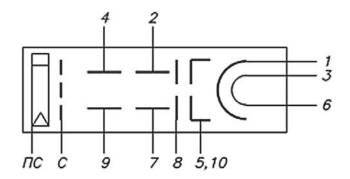
Радиационно-стойкий видикон ЛИ501-1MK

Мишень видикона ЛИ501-1МК 2/3" изготовлена на основе селенида кадмия.

Используется магнитная фокусировка и электростатическое отклонение.

Применение

 телевизионные камеры специального назначения в условиях повышенной радиации до 5·10⁷ Рад;


Конструктивное оформление:

Стеклянное, без цоколя с кольцевыми выводами сигнальной пластины и сетки.

Схема расположения выводов:

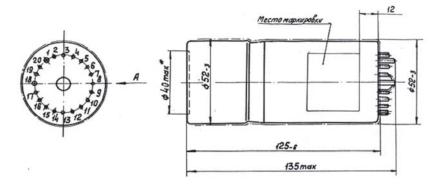
Схема ЛИ501-1МК

Обозначение вывода	Наименование электродов
1	Катод
2,7	Электрод дефлектрона (кадры)
3,6	Подогреватель
4,9	Электрод дефлектрона (строки)
5	Модулятор
8	Анод
10	Ключ (не подключать)
С	Сетка
ПС	Пластина сигнальная

Основные параметры

Размер рабочей поверхности мишени, мм	6,6×8,8
Длина, мм	≤90
Диаметр, мм	17,8 _{-0,6}
Диаметр контактных колец, мм	$19,6 \pm 0,1$
Масса, г	≤18
Напряжение накала, В	6,3
Ток накала, мА	80-115
Напряжение на аноде, В	250
Напряжение на электродах дефлектрона, постоянное, В	220
Напряжение на сетке, В	340
Напряжение на сигнальной пластине, В	10-25
Напряжение на модуляторе рабочее, В	0-15
Напряжение на модуляторе, запирающее (отрицательное), В	≤20
Номинальная освещенность мишени, лк	1
Ток сигнала, мкА	≥0,15
Темновой ток, мкА	€0,003

Разрешающая способность в центре, ТВЛ	≥ 600
Разрешающая способность	≥550
в углах, ТВЛ	
Глубина модуляции на отметке	≥55
400 ТВЛ в центре, %	
Инерционность спада тока	≤14
сигнала через 40 мс после	
выключения света, %	
Неравномерность темнового	≤15
фона, %	
Геометрические искажения, %	≤2,5
Максимальная освещенность	4
мишени, лк	
Мощность экспозиционной	≤1·10 ⁵
дозы, Рад/ч	
Емкость между сигнальной	≤3,5
пластиной и остальными	
электродами, соединенными	
вместе, пФ	
Время готовности, с	≤30
Гарантийная наработка, ч	1000

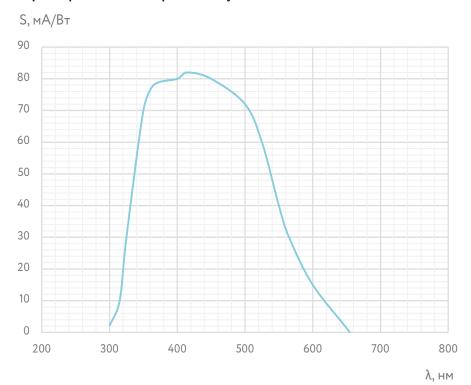


Спектрометрический фотоэлектронный умножитель ФЭУ-143-1

Спектрометрический фотоэлектронный умножитель ФЭУ-143-1 имеет бищелочной фотокатод, плосковогнутое входное окно из боросиликатного стекла, электростатическую фокусировку электронов и линейную 12-динодную систему умножения.

 Обладает минимальным разбросом времени пролета в пределах рабочей площади фотокатода.

Габаритный чертеж



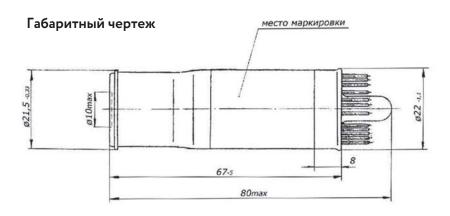
Основные параметры

 исследование быстропротекающих процессов.

Диаметр фотокатода, мм	40
Диаметр прибора, мм	52
Материал фотокатода	SbKCs
Напряжение питания соответствующее: - световой анодной чувствительности 100 А/лм, В - световой анодной чувствительности 1000 А/лм, В	≤2000 ≤2450
Диапазон спектральной чувствительности, нм	300÷650
Световая чувствительность фотокатода, мкА/лм	≽40
Спектральная чувствительность фотокатода на λ =410 нм, мА/Вт	≥50
Время нарастания импульсной характеристики, нс	≤ 3
Энергетическое разрешение на кристалле NaI (TI) ⁵⁷ Co, %	≤11
Энергетический эквивалент собственных шумов, кэВ	1,5
Скорость счета одноэлектронных темновых импульсов, имп./с.	≤1000
Одноэлектронное амплитудное разрешение на уровне 0,75 высоты пика, %	≤ 95

Характеристика спектральной чувствительности

■ +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU

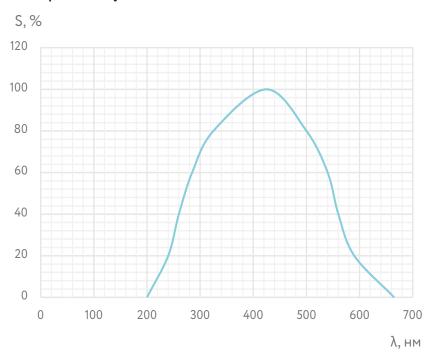


Фотоэлектронный умножитель ФЭУ-175

Фотоэлектронный умножитель ФЭУ-175 имеет сурьмяно-калиевоцезиевый фотокатод и 14-динодную линейную систему умножения.

Конструктивное оформление:

ФЭУ-175 изготовлен в стеклянном баллоне с торцевым оптическим входом. Входное окно выполнено из боросиликатного увиолевого стекла. В комплект поставки может входить колодка с делителем напряжения.



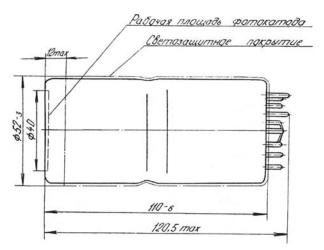
- спектрозональные исследования;
- специальная аппаратура;
- газоанализаторы.

Основные параметры

Материал фотокатода	SbKCs
Диаметр фотокатода, мм	10
Диаметр прибора, мм	22
Длина, мм	67
Число динодов	14
Диапазон спектральной чувствительности, нм	220÷650
Световая чувствительность фотокатода, мкА/лм	≤50
Спектральная чувствительность фотокатода на λ =400 нм, мА/Вт	≤60
Темновой ток, А	≤2.10-8
Скорость счета темновых импульсов на уровне одноэлектронного пика, 1/с	≤300
Номинальное напряжение питания, соответствующее световой анодной чувствительности 100 А/лм, В	≤2200
Время нарастания импульсной характеристики, нс	1,5

Характеристика относительной спектральной чувствительности

■ +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU

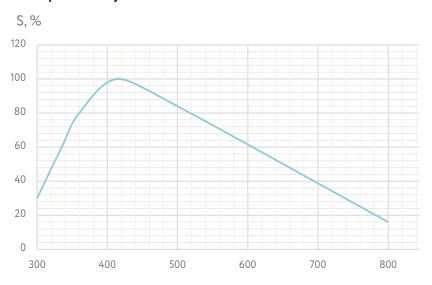

Спектрометрический фотоэлектронный умножитель ФЭУ-176

Фотоумножитель ФЭУ-176 имеет многощелочной фотокатод типа \$20, электростатическую фокусировку электронов, 12-динодную систему умножения.

Конструктивное оформление:

ФЭУ-176 изготовлен в стеклянном баллоне с торцевым оптическим входом и жесткими выводами. Входное окно выполнено из боросиликатного стекла C50-3 или C52-2.

Габаритный чертеж



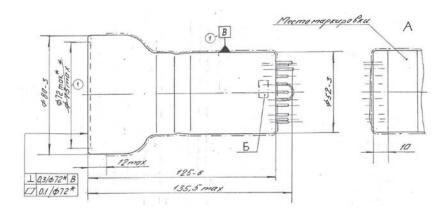
- фотометрия;
- спектрометрия;
- регистрация гамма-излучения сцинтилляционным методом;
- диагностическая радиоизотопная аппаратура;
- экология;
- биофизика;
- геология;
- геофизика;
- ядерная физика;
- физика высоких энергий.

Основные параметры

Диаметр фотокатода, мм	40
Диаметр прибора, мм	52
Длина, мм	120,5
Диапазон спектральной чувствительности, нм	300÷850
Световая чувствительность фотокатода, мкА/лм	130
Спектральная чувствительность фотокатода на λ= (410±10) нм, мА/Вт	52
Напряжение питания, В	≤1500
Световая анодная чувствительность, А/лм	10
Темновой ток, нА	8
Коэффициент усиления в нормальных условиях, раз	1.105
Энергетическое разрешение, не более, % – с источником гамма-излучений ¹³⁷ Сs – с источником гамма-излучений ⁵⁷ Со	7,3 11,5
Энергетический эквивалент собственных шумов, кэВ	≤1,5
Нелинейность световой характеристики в импульсном режиме при токе анода 0,3 А и длительности импульса ≤2·10-6с, %	≤30

Характеристика относительной спектральной чувствительности

 $\lambda, \, \text{hm}$

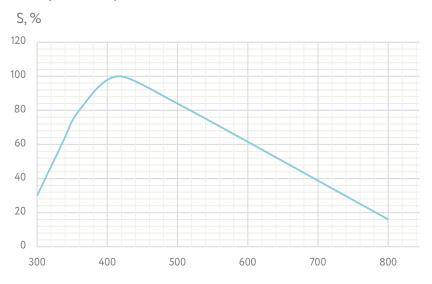

Спектрометрический фотоэлектронный умножитель ФЭУ-183, ФЭУ-183-1

Спектрометрический фотоэлектронный умножитель ФЭУ-183, ФЭУ-183-1 имеет многощелочной фотокатод типа \$20, электростатическую фокусировку электронов, 12-динодную систему умножения жалюзийного типа.

Конструктивное оформление:

ФЭУ-183, ФЭУ-183-1 изготовлен в стеклянном баллоне с торцевым оптическим входом, с жесткими выводами. Входное окно выполнено из боросиликатного стекла С50-3 или С52-2.

Габаритный чертеж



П	рименение
•	фотометрия;
•	спектрометрия слабых световых потоков;
•	регистрация гамма-излучения сцинтилляционным методом;
•	экология;

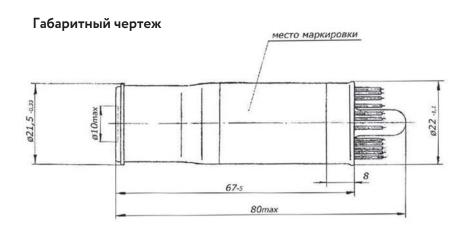
- биофизика;
- медицина
- геология;
- геофизика;
- ядерная физика;
- физика высоких энергий.

Основные параметры	ФЭУ-183	ФЭУ-183-1
Диаметр фотокатода, мм	72	72
Диаметр прибора, мм	80	80
Длина, мм	125	125
Напряжение питания, В	1600	1600
Диапазон спектральной чувствительности, нм	300÷850	300÷850
Диапазон максимальной спектральной чувствительности, нм	370÷430	370÷430
Световая чувствительность фотокатода, мкА/лм	100	100
Спектральная чувствительность фотокатода на λ=(410±10) нм, мА/Вт	70	60
Световая анодная чувствительность, А/лм	10	10
Время нарастания импульсной характеристики, нс	8	8
Энергетическое разрешение, % – На кристалле Nal (TI) ¹³⁷ Cs – На кристалле Nal (TI) ⁵⁷ Co	7,6 11	8,5 12
Темновой ток, нА	≤ 50	≤50
Температурный диапазон, °С	-60÷+70	-60÷+70
Предельно допустимый ток анода, А	5·10 ⁻⁴	5·10 ⁻⁴
Энергетический эквивалент собственных шумов, кэВ	≤1,5	≤1,5

Характеристика относительной спектральной чувствительности

 λ , HM

■ +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU

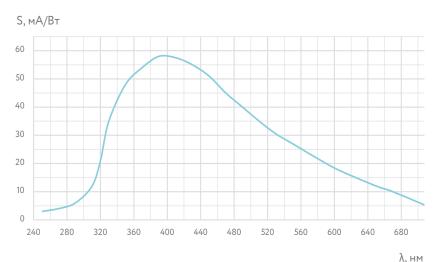


Фотоэлектронный умножитель ФЭУ-186, ФЭУ-186-1

Фотоэлектронный умножитель ФЭУ-186 имеет многощелочной фотокатод и 14-динодную линейную систему умножения. ФЭУ-186-1 также имеет две предфотокатодные сетки перед первым динодом, может работать в управляемом режиме.

Конструктивное оформление:

ФЭУ-186 и ФЭУ-186-1 изготавливаются в стеклянном баллоне с торцевым оптическим входом. Входное окно выполнено из боросиликатного увиолевого стекла. В комплект поставки может входить колодка с делителем напряжения.



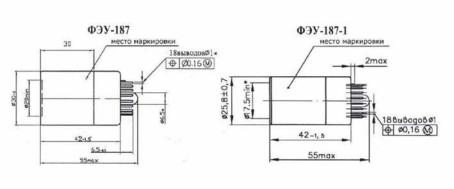
- регистрация импульсных сигналов в видимой и ближней ИК областях спектра;
- спектрозональные исследования.

Основные параметры

Материал фотокатода	SbKNaCs
Рабочий диаметр фотокатода, мм	10
Диаметр прибора, мм	22
Длина, мм	67
Число динодов	14
Диапазон спектральной чувствительности, нм	260÷750
Световая чувствительность фотокатода, мкА/лм	≽80
Световая анодная чувствительность, А/лм	100
Темновой ток, А	≤5·10 ⁻⁹
Номинальное напряжение питания, соответствующее световой анодной чувствительности 100 А/лм, В	≤2200
Время нарастания импульсной характеристики, нс	≤1,5

Характеристика спектральной чувствительности

■ +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU

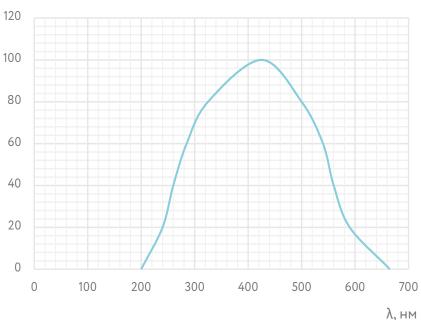

Радиационно-стойкий и магнитоустойчивый фотоэлектронный умножитель ФЭУ-187, ФЭУ-187-1

Фотоэлектронный умножитель серии ФЭУ-187 имеет бищелочной фотокатод и 15-каскадный вторично-электронный умножитель с динодами, выполненными в виде сетчатых электродов.

Конструктивное оформление:

Прибор изготавливается в стеклянном баллоне с торцевым оптическим входом, с жесткими выводами. Входное окно выполнено из боросиликатного увиолевого стекла, динодная система типа «proximity». Возможная комплектность: колодка с делителем напряжения.

Габаритный чертеж


22

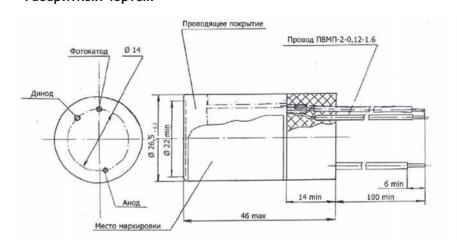
- регистрация сцинтилляционного излучения в физике высоких энергий;
- может использоваться в условиях одновременного воздействия сильных магнитных полей, радиоактивных излучений и элементарных частиц.

Основные параметры	ФЭУ-187	ФЭУ-187-1
Материал фотокатода	SbKCs	SbKCs
Длина, мм	55	55
Диаметр, мм	30	25,8
Диаметр фотокатода, мм	20	17,5
Число динодов	15	15
Частота сетки, лин./мм	60	60
Диапазон спектральной чувствительности, нм	220÷650	220÷650
Световая чувствительность фотокатода, тип., мкА/лм	60	60
Спектральная чувствительность фотокатода на λ = (410±10) нм, мА/Вт	60	60
Световая анодная чувствительность, А/лм	40	40
Напряжение питания, соответствующее световой анодной чувствительности 30 А/лм, тип., В	1800	1800
Темновой ток, А	1.10-8	1.10-8
Коэффициент усиления в нормальных условиях, тип., раз	5·10 ⁵	5·10 ⁵
Коэффициент усиления в магнитном поле с напряженностью H=0,5 Тл, тип., раз	2.105	2.105
Время нарастания импульсной характеристики, тип., нс	1,4	1,4
Энергетическое разрешение с кристаллом Nal(Tl) и источником гамма-излучения 137Cs, тип., %	10,1	10,1
Температурный диапазон, °С	-60÷+55	-60÷+55

Характеристика относительной спектральной чувствительности

S, %

• +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU

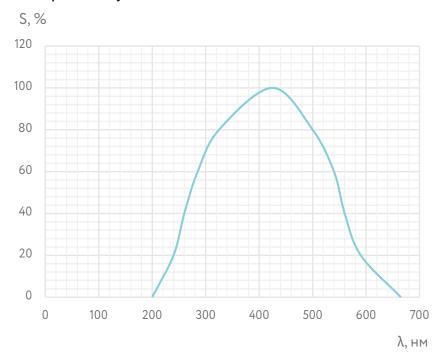

Магнитоустойчивый фотоэлектронный умножитель ФЭУ-188

Фотоэлектронный умножитель ФЭУ-188 имеет бищелочной фотокатод и однокаскадную систему умножения с динодом, выполненным в виде сетчатого электрода с частотой сетки 100 лин./мм.

Конструктивное оформление:

ФЭУ-188 изготовлен в стеклянном баллоне с торцевым оптическим входом, с гибкими выводами. Входное окно выполнено из боросиликатного увиолевого стекла.

Габаритный чертеж



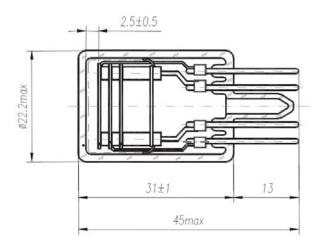
• фотодетекторы, работающие в условиях воздействия магнитных полей до 4 Тл и радиационных излучений до 2 кГр.

Основные параметры

Материал фотокатода	SbKCsO
Диаметр фотокатода, мм	22
Диаметр прибора, мм	26,5
Длина, мм	46
Напряжение питания, В	1000
Диапазон спектральной чувствительности, нм	220 ÷ 650
Световая чувствительность фотокатода, мкА/лм	≥60
Квантовая эффективность фотокатода на λ =420 нм, %	≥18
Темновой ток, нА	€2
Коэффициент усиления в нормальных условиях, раз	≥ 8
Коэффициент усиления в магнитном поле с напряженностью H=4Tл, раз	≽6

Характеристика относительной спектральной чувствительности

■ +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU


Магнитоустойчивый фотоэлектронный умножитель ФЭУ-тетрод

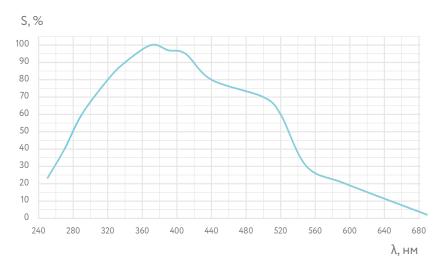
Фотоэлектронный умножитель ФЭУ-тетрод имеет бищелочной фотокатод и двухкаскадную систему умножения.

Конструктивное оформление:

ФЭУ-тетрод изготовлен в стеклянном баллоне с торцевым оптическим входом и гибкими выводами. Входное окно выполнено из боросиликатного увиолевого стекла.

Габаритный чертеж

26 AO «ЦНИИ «Электрон»


• регистрация сцинтилляционного излучения в физике высоких энергий при работе в условиях воздействия магнитных полей до 1,2 Тл и радиационных излучений порядка до 1500 Гр.

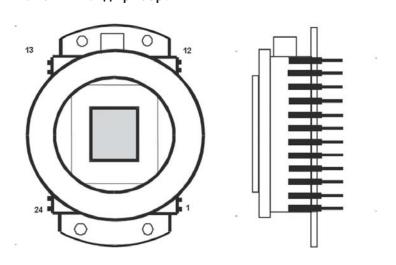
Основные параметры

Материал фотокатода	SbKCsO
Диаметр фотокатода, мм	16
Диаметр прибора, мм	22,2
Длина, мм	46
Напряжение питания, В	1200
Диапазон спектральной чувствительности, нм	220 ÷ 650
Световая чувствительность фотокатода, мкА/лм	≥60
Квантовая эффективность фотокатода на λ =420 нм, %	≥15
Темновой ток, нА	€2
Коэффициент усиления в нормальных условиях, раз	≥20
Коэффициент усиления в магнитном поле с напряженностью H = 1,2 Тл, раз	≽13
Температурный диапазон, °С	-5 ÷ +50

Перечень наиболее полных характеристик может быть представлен по запросу Заказчика.

Характеристика относительной спектральной чувствительности

Твердотельные фотоэлектронные приборы

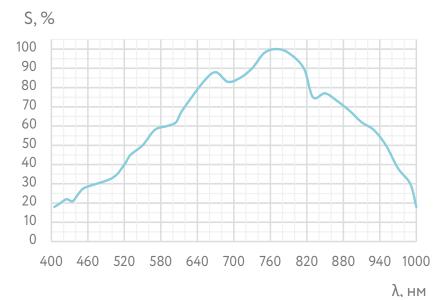

Матричный фоточувствительный прибор с переносом заряда ФППЗ 26М

Фоточувствительный двухсекционный матричный прибор с переносом заряда с общим числом пикселей 768×580, с объемным п-каналом переноса. ФППЗ охлаждается посредством встроенного термоэлектрического охладителя.

Конструктивное оформление:

Прибор имеет металлокерамический корпус с оптическим входным окном из стекла марки C50-5M ВТУ 11-77. Охлаждение — 2-х каскадная термобатарея. Предусмотрен подогрев входного окна.

Внешний вид прибора

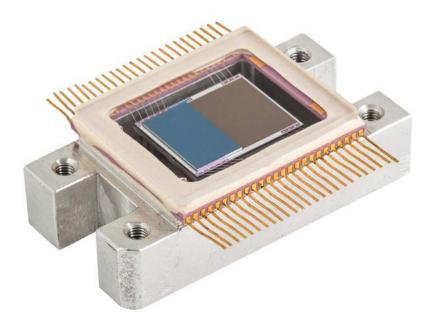

АО «ЦНИИ «Электрон»

• телевизионные оптико-электронные системы научного и промышленного назначения.

Основные параметры

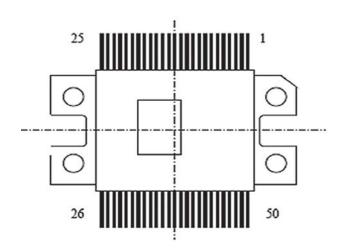
Число пикселей	768×580
Размер изображения, мм	9,98 × 7,49
Размер пикселя, (Г×В), мкм	13×26
Диапазон спектральной чувствительности, нм	400÷1000
Габаритные размеры, макс. Ø, мм	45
Напряжение насыщения, В	≥0,5
Освещенность насыщения, лк	≤15
Относительная среднеквадратическая неравномерность выходного сигнала, %	≤ 5
Пороговая освещенность, лк	5·10 ⁻³
Относительное значение темнового сигнала, приведенное к напряжению выходного сигнала, %	≤0,4
Относительная среднеквадратическая неравномерность темнового сигнала, %	≤2
Динамический диапазон выходного сигнала, отн.ед.	≥3000
Коэффициент передачи модуляции по горизонтали на отметке 400 ТВЛ, % – в центре – в углах	60 55
Коэффициент передачи модуляции по вертикали на отметке 200 ТВЛ, % – в центре – в углах	65 60

Характеристика относительной спектральной чувствительности



• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

• +7(812) 297-82-49 (доб. 394) ∣ info@niielectron.ru ∣ NIIELECTRON.RU


Матричный фоточувствительный прибор с переносом заряда ФППЗ 28М

Фоточувствительный двухсекционный матричный прибор с переносом заряда с общим числом пикселей 768×580, с объемным п-каналом переноса, антиблюмингом и электронным затвором. Имеет встроенный термоэлектрический холодильник.

Конструктивное оформление:

Прибор имеет металлокерамический корпус с оптическим входным окном из стекла марки K-208 ОСТ 3-3677-82. Охлаждение – термобатарея K2-95-1/3 ТУ 25-2477.0066-2001.

Внешний вид прибора

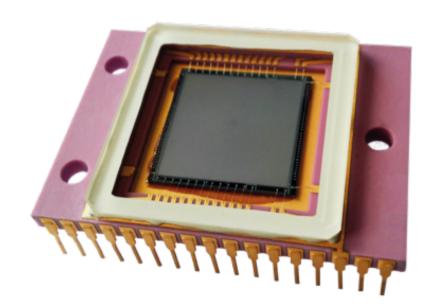
32 AO «ЦНИИ «Электрон»


• телевизионные оптико-электронные системы научного и промышленного назначения.

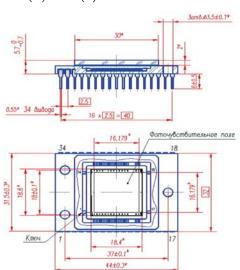
Основные параметры

Число пикселей разложения изображения	768×290
Размер фоточувствительного поля прибора, мм	13,06×9,86
Размер пикселя, (Г×В), мкм	17×34
Диапазон спектральной чувствительности, нм	400÷1000
Напряжение насыщения, В	2,5
Освещенность насыщения, лк	10
Относительная среднеквадратическая неравномерность выходного сигнала, %	3,5
Среднее значение темнового сигнала, отнесенное к напряжению насыщения, %	0,15
Коэффициент передачи модуляции по	
горизонтали в центре: – на отметке 400 ТВЛ, % – на отметке 600 ТВЛ, %	90 70
Коэффициент передачи модуляции по вертикали в центре на отметке 300 ТВЛ, %	60
Пороговая освещенность при отношении сигнал/шум = 3, лк	3.10-3
Динамический диапазон, отн.ед.	10000
Коэффициент подавления локальной пересветки, отн.ед.	1000
Кратность электронного затвора, отн.ед.	64
Максимальный температурный диапазон, °С	-60÷+70

Характеристика относительной спектральной чувствительности


• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

• +7(812) 297-82-49 (доб. 394) | info@niielectron.ru | NIIELECTRON.RU


Матричный фоточувствительный прибор с зарядовой связью ФППЗ 33М

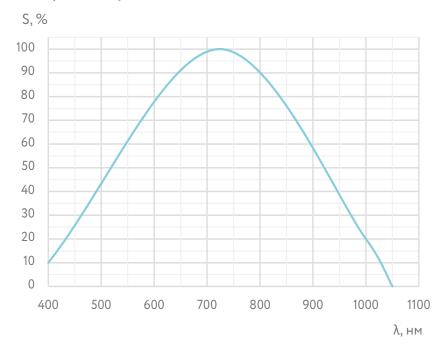
Прибор состоит из кристалла матричного ФППЗ с межстрочным переносом на основе кремния, помещенного в герметичный металлокерамический корпус со стеклянным входным окном.

Фоточувствительное поле МФППЗ содержит матрицу пикселей и вертикальных регистров с зарядовой связью (ПЗС) для переноса заряда из фотодиодов в горизонтальные регистры.

Матричный фоточувствительный прибор разработан в четырех модификациях: $\Phi\Pi\Pi3$ 33M, $\Phi\Pi\Pi3$ 33M-1, $\Phi\Pi\Pi3$ 33 M-2 и $\Phi\Pi\Pi3$ 33M-3.

Фоточувствительное поле содержит 1024×1024 пикселя, 1024 вертикальных ПЗС регистра и два горизонтальных регистра. Направление переноса заряда горизонтальными регистрами – от центра к краям. Прогрессивная развертка МФППЗ позволяет сформировать в каждом кадре видеосигнал от всех пикселей – 2×512 (H) $\times 1024$ (V).

Габаритный чертеж


АО «ЦНИИ «Электрон»

- оптические системы видимого диапазона формата 1 дюйм;
- ТВ системы дистанционного зондирования и технического

зрения для прецизионного определения координат.

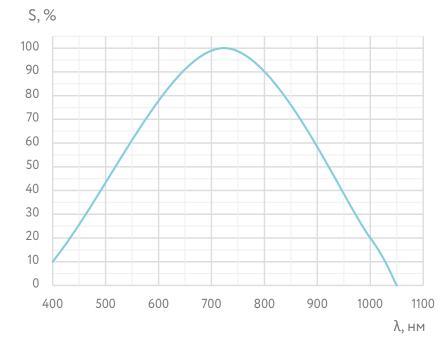
Основные параметры	ФППЗ 33М	ФППЗ 33М-1	ФППЗ 33М-2	ФППЗ 33М-3
Число пикселей	1024×1024	1024×1024	1024×1024	1024×1024
Размер пикселя, мкм	12,8	12,8	15,8	15,8
Размер фоточувствительной области, мм	13,11	13,11	16,18	16,18
Класс дефектности	0	1	0	1
Динамический диапазон, дБ	≥ 70	≥ 70	≽ 70	≥ 70
Напряжение насыщения, В	≥ 1	≥ 1	≥ 1	≥ 1
Интегральная чувствительность, В \cdot мкДж $^{-1}\cdot$ см 2	≽13	≽13	≥13	≥ 13
Относительная среднеквадратическая неравномерность темнового сигнала, %	≤ 3	≼3	≼3	≼3
Диапазон спектральной чувствительности, нм	400÷900	400÷900	400÷900	400÷900
Максимальная частота выходного сигнала, МГц	≥20	≥20	≥20	≥20

Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

Матричный фоточувствительный прибор с зарядовой связью ФППЗ 34М

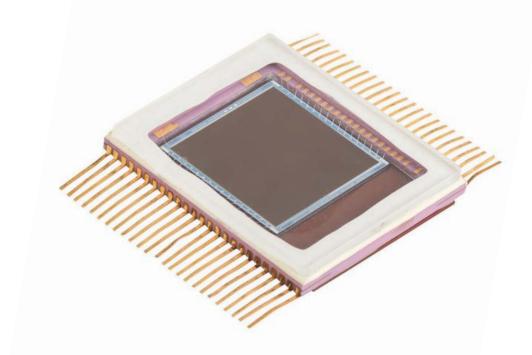
ФППЗ имеет секцию накопления и секцию памяти. Секция памяти имеет формат 1048(Г)×1032(В) пикселей и независимое от секции накопления управление. Стойкость ФППЗ к ИИКП к воздействию фактора 7.С с характеристиками 7.С4 не ниже 5,75×1Ус.


ФППЗ 34М, стойкий к ионизирующему излучению космического пространства (ИИКП), предназначен для работы в видимом и ближнем инфракрасном диапазонах спектра, обеспечивающих повышенную точность и помехозащищенность оптико-электронных приборов астроориентации космических аппаратов (КА), угломерных приборов КА, повышенную дальность обнаружения целей в условиях повышенной радиации и сверхширокополосного электромагнитного воздействия средств радиоэлектронного подавления.

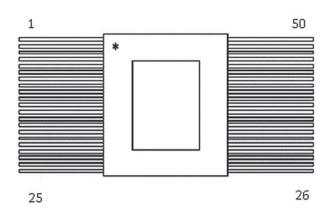
- космические аппараты;
- объекты атомной энергетики;
- робототехника и системы технического зрения.

Основные параметры

Число пикселей	1024×1024
Размер пикселя, мкм	11×11
Напряжение насыщения, мВ	≥1000
Коэффициент передачи модуляции на отметке 500 ТВЛ по горизонтали, %	≥50
Среднее значение темнового сигнала, мВ/с	≼ 4
Среднеквадратическая неравномерность темнового сигнала по полю, %	≼4
Среднеквадратическая локальная в зоне 5×5 пикселей неравномерность темнового сигнала, %	≼3
Относительная среднеквадратическая неравномерность выходного сигнала по полю, %	≤10
Относительная среднеквадратическая локальная в зоне 5×5 пикселей неравномерность выходного сигнала, %	≤ 9
Интегральная чувствительность, приведенная к источнику типа А, В/(лк·с)	10÷15
Пороговая экспозиция (при времени накопления до 1 с), лк·с	≤2.10-5
Коэффициент подавления локальной пересветки, отн. ед.	≥ 2
Неэффективность переноса заряда, отн. ед.	1.10-5
Диапазон спектральной чувствительности, нм	450÷1000
Количество белых и черных дефектных пикселей, шт.	≤100


Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.


Матричный фоточувствительный прибор с кадровым переносом заряда «Квадро-Т»

ФППЗ «Квадро-Т» – матричный фоточувствительный прибор с кадровым переносом заряда, объемным п-каналом, подложкой р-типа. Может выпускаться с ТЭБ и волоконно-оптическим входом.

Прибор имеет секцию накопления и секцию хранения. Общее число пикселей в выходном регистре 1568. Первые 16 определяют уровень темнового сигнала. Допускается считывание элементов по регистру, как в одном, так и в другом направлении.

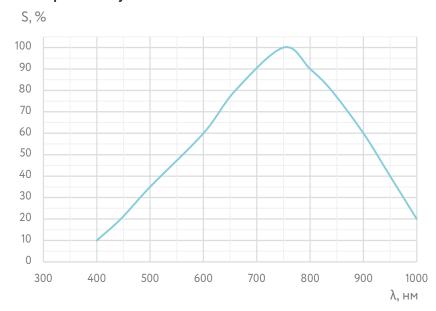
Каждая секция содержит 768 строк по 1536 пикселей в строке.

Внешний вид прибора

38 AO «ЦНИИ «Электрон»

- телевизионная аппаратура с непрерывным и импульсным освещением в системах преобразования и обработки изображения;
- измерительные устройства.

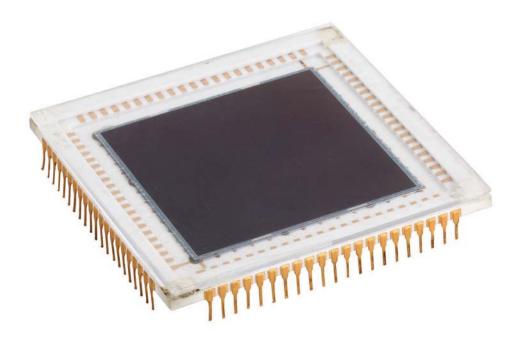
Достоинства


- широкий спектральный диапазон;
- низкий темновой ток;
- возможность работы в высокочастотном режиме при частоте регистра до 40,0 МГц;
- возможность работы в низкочастотном режиме при времени накопления до 10 с.

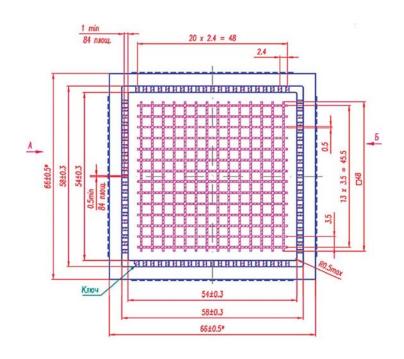
Основные параметры

Число пикселей	1536×1536
Размер фоточувствительной области, мм	16,898 × 16,898
Размер пикселя (Г×В), мкм	11×11
Габаритные размеры (с выводами), мм	32,0 × 42,5 × 5,0
Масса прибора, г	10
Формат изображения	1:1; 1:2
Полный кадр, строк	1536
Диапазон спектральной чувствительности, нм	400÷1000
Напряжение насыщения, В	1,0
Монохроматическая чувствительность на λ = 670 нм, В/мкДж/см 2	5
Среднее значение темнового сигнала, мВ/с	30
Среднеквадратичная неравномерность выходного сигнала, %	2
Шум, ē	≤20
Динамический диапазон, отн.ед.	8000
Глубина модуляции на пространственной частоте, равной f _N /2 по горизонтали и вертикали, %	55
Неэффективность переноса, отн.ед.	1.10-5

Перечень наиболее полных характеристик может быть представлен по запросу Заказчика.


Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

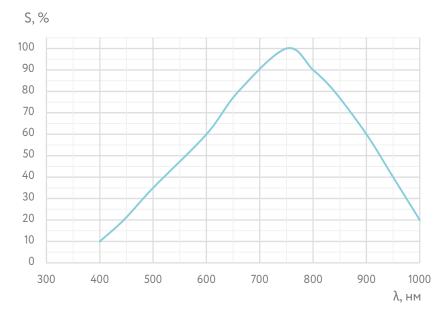


Крупногабаритный матричный фоточувствительный прибор с переносом заряда «Квадро»

Матричный фоточувствительный прибор с переносом заряда с четырьмя независимыми секциями, объемным п-каналом и числом пикселей 4096×4096.

Фоточувствительное поле прибора имеет четыре независимых секции накопления, которые могут работать в режиме импульсного и непрерывного освещения. Матрица имеет центральную симметрию, два выходных регистра и четыре выходных узла.

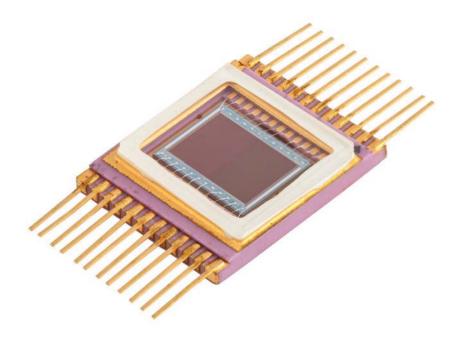
Габаритный чертеж


- телевизионная аппаратура с непрерывным и импульсным освещением в системах преобразования и обработки изображения;
- измерительные устройства.

Основные параметры

Число пикселей	4096×4096
Размер фоточувствительной области, мм	45,056 × 45,056
Размер пикселя, мкм	11×11
Габаритные размеры (с выводами), мм	66×66×10
Диапазон спектральной чувствительности, нм	400÷1000
Напряжение насыщения, В	1,1
Монохроматическая чувствительность на $\lambda = 670$ нм, В/мкДж/см 2	5
Среднее значение темнового сигнала, мВ/с	30
Среднеквадратичная неравномерность выходного сигнала, %	2
Шум, ē	≤22
Динамический диапазон, отн.ед.	8000
Глубина модуляции на пространственной частоте, равной $ {\sf f}_{\sf N}/2 $ по горизонтали и вертикали, $ \% $	55
Неэффективность переноса, отн.ед.	1.10-5
Выходная частота регистра, МГц	1-40
Число выводов	84

Перечень наиболее полных характеристик может быть представлен по запросу Заказчика.

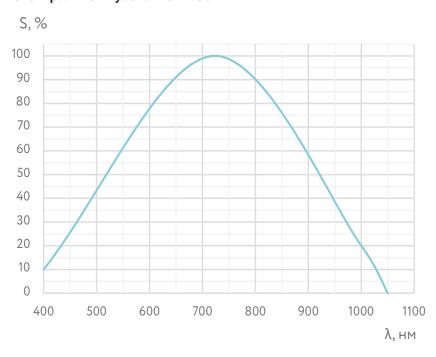

Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

Линейный фоточувствительный прибор с переносом заряда ФППЗ 6Л

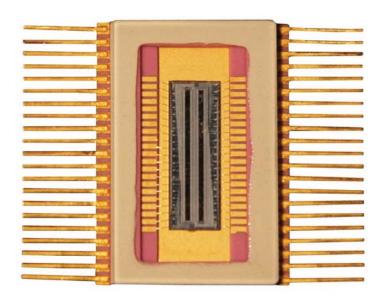
Фоточувствительный линейный прибор с переносом заряда имеет два светочувствительных сдвиговых регистра по 264 пикселя.

Применение

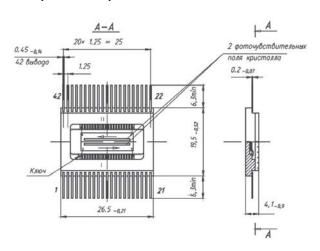

• телевизионные, измерительные, обзорные системы.

На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

Основные параметры


Габаритные размеры (с выводами), мм	33,9×15,75×3,0
Диапазон спектральной	400÷1000
чувствительности, нм	
Число пикселей	264×2
Расстояние между регистрами, мм	8,7
Длина фоточувствительной области, мм	6,0
Размер пикселя, (Г×В), мкм	23×50
Частота выходного сигнала (макс.), МГц	0,25
Число фаз управления	3
Напряжение питания, В	18
Напряжение сигнала насыщения, В	3,0
Световая чувствительность, В/лк·с	40
Шаг дискретизации, мкм	23
Динамический диапазон, дБ	60
Неравномерность выходного сигнала. %	10

Характеристика относительной спектральной чувствительности

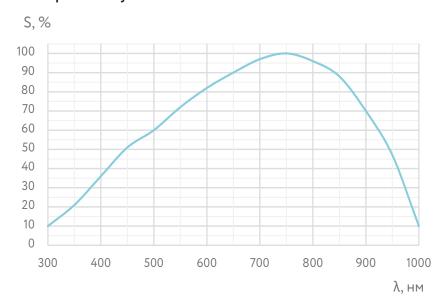

Линейный фоточувствительный прибор с переносом заряда ФППЗ 8Л

Линейный фоточувствительный прибор с переносом заряда ФППЗ 8Л состоит из двух идентичных линейных фоточувствительных приборов форматом 1000 пикселей каждый.

Приборы на кристалле ориентированы параллельно друг другу с поворотной на 180° симметрией и смещены друг относительно друга на половину шага пикселей (6,5 мкм).

Каждый фоточувствительный прибор имеет билинейную организацию и содержит отдельные секции для детектирования и накопления зарядовых пакетов. Устройство антиблюминга ФППЗ 8Л позволяет работать при пересветке прибора с кратностью не менее 100 раз. Предусмотрен также режим электронного экспонирования (от 10 мкс).

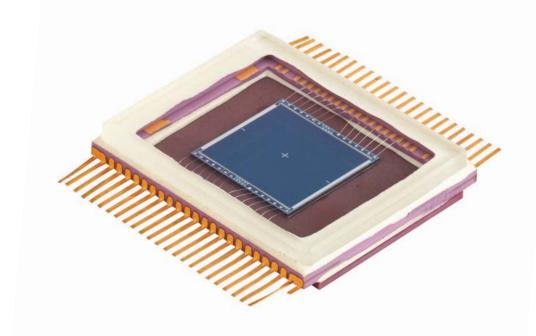
Габаритный чертеж



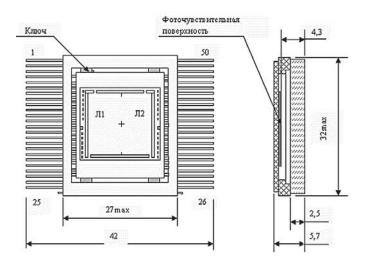
- аппаратура спектрального анализа;
- оптоэлектронные системы пространственной ориентации;
- бесконтактные системы измерения размеров объектов.

Основные параметры

Количество пикселей	2×1000
Размер пикселя, мкм	13×500
Шаг расположения пикселей, мкм	13
Расстояние между линейками, мкм	844
Габаритные размеры корпуса, мм	26,5×19,5
Диапазон спектральной чувствительности, нм	200÷1100
Управление регистрами	4-х фазное
Максимальная скорость вывода информации, МГц	5
Сигнал насыщения, В	1,4
Динамический диапазон, отн.ед.	≥6000
Чувствительность (источник типа A с C3C-23, при частоте выходного	
сигнала 200 кГц), В/Лк·с	25
Относительная световая неравномерность, %	±3
Относительная темновая неравномерность, %	0,1
Максимальное напряжение на выводах, В	20
Максимальная частота работы, МГц	2,5
Температурный диапазон работы, °С	-50÷+50


Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

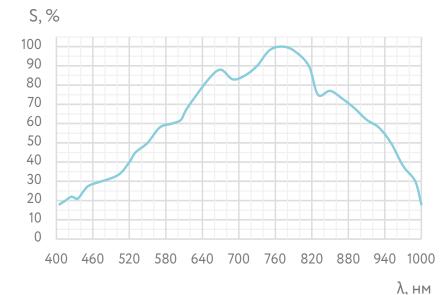

Линейный фоточувствительный прибор с переносом заряда ФППЗ 29Л

Прибор ФППЗ 29Л содержит два идентичных линейных ФППЗ, расположенных параллельно на одном кристалле на расстоянии 12,5 мм и имеющих независимое управление.

Конструктивное оформление:

Прибор имеет металлокерамический корпус с оптическим входным окном из стекла.

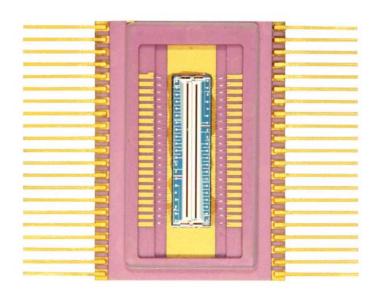
Габаритный чертеж



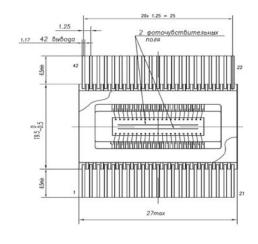
- оптоэлектронные системы пространственной ориентации;
- бесконтактные системы измерения размеров объектов.

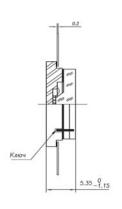
Основные параметры

Количество фоточувствительных областей, шт.	2
Число пикселей каждой линейки	1024
Расстояние между осями фоточувствительных линеек, мм	12,5
Размер пикселя (Г×В), мкм	13×50
Длина фоточувствительной области, мм	≥13,3
Габаритные размеры (без выводов), мм	32×27×5,7
Напряжение насыщения, В	3,6
Спектральная чувствительность на длине волны излучения 0,67±0.02 мкм, В·см²/мкДж	20
Среднеквадратическая неравномерность выходного сигнала, отнесенная к среднему значению выходного сигнала при E=0,5 E _{нас} : – по всему массиву элементов, % – по локальной зоне размером 20 эл., %	5 3
Среднее значение напряжения темнового сигнала, мВ	20
Динамический диапазон, дБ	75
Неэффективность переноса заряда, отн.ед.	0,06
Число дефектных элементов, шт.	не допускается
Ток утечки между электродами, мкА	100
Частота вывода информации, кГц	150
Постоянное напряжение на стоках транзисторов выходного узла, В	≤24
Постоянное напряжение на разделительном стоке, В	€24


Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.


Линейный фоточувствительный прибор с переносом заряда ФППЗ 30Л


Линейный фоточувствительный прибор с переносом заряда ФППЗ 30Л состоит из двух идентичных линейных ПЗС форматом 1024 пикселей каждый. Линейки на кристалле ориентированы параллельно друг другу, каждая имеет билинейную организацию и содержит отдельные секции для детектирования и накопления зарядовых пакетов.

Устройство антиблюминга ФППЗ 30Л позволяет работать при пересветке прибора с кратностью не менее 100 раз. Предусмотрен также режим электронного экспонирования (от 10 мкс).

Линейный ФППЗ 30Л изготавливается в двух модификациях: со светозащитным экраном и без.

Габаритный чертеж

- аппаратура спектрального анализа;
- оптоэлектронные системы пространственной ориентации;
- бесконтактные системы измерения размеров объектов.

Основные параметры	ФППЗ 30Л со светозащитным экраном	ФППЗ 30Л
Число пикселей	2×1024	2×1024
Размер пикселя, мкм	13×26	13×150
Шаг расположения пикселей, мкм	13	13
Габаритные размеры корпуса, мм	26,5×19,5	26,5×19,5
Расстояние между центрами линеек, мкм	900	900
Непараллельность фоточувствительной области относительно базовой поверхности (внешняя поверхность стекла), мм	≤0,01	-
Управление регистрами	4-х фазное	4-х фазное
Максимальная скорость вывода информации, МГц	5	5
Сигнал насыщения, В	1,5	2,4
Динамический диапазон, отн.ед.	≥2000	≥6000
Чувствительность (источник типа А с СЗС-23, при частоте выходного сигнала 200 кГц), В/Лк·с	0,8	12
Относительная световая неравномерность, %	10	±4
Относительная темновая неравномерность, %	5	1
Максимальное напряжение на выводах, В	-	20

Характеристика относительной спектральной чувствительности

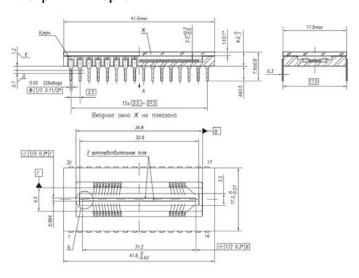
Температурный диапазон работы, °С

S, %


-50÷+50

-50÷+50

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

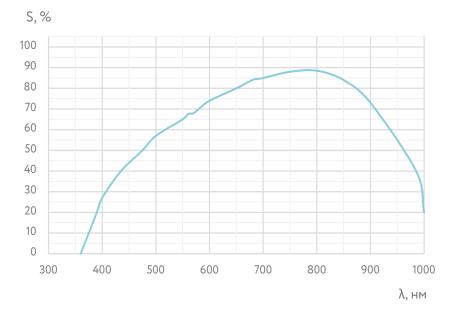


Линейный фоточувствительный прибор с переносом заряда ФППЗ 32Л

Линейный фоточувствительный прибор с переносом заряда ФППЗ 32Л состоит из двух идентичных линейных ПЗС форматом 2600 пикселей, имеющих осевую симметрию и независимое управление.

Каждый ПЗС имеет билинейную организацию и содержит отдельные секции для детектирования и накопления зарядовых пакетов. Устройство антиблюминга ФППЗ 32Л позволяет работать при пересветке прибора с кратностью не менее 100 раз. Предусмотрен также режим электронного экспонирования (от 10 мкс).

Габаритный чертеж


АО «ЦНИИ «Электрон»

- координатноизмерительные системы;
- спектроскопия;
- системы пространственной ориентации;
- космическое приборостроение.

Основные параметры

Количество пикселей	2×2600
Размер пикселя, мкм	12×100
Шаг расположения пикселей, мкм	12
Расстояние между краями линеек, мкм	664
Габаритные размеры корпуса, мм	41,6×17,5
Управление регистрами	4-х фазное
Максимальная скорость вывода информации, МГц	≥ 1,5
Сигнал насыщения, В	≥2,0
Динамический диапазон, отн.ед.	≥2000
Чувствительность (источник типа A с C3C-23, при частоте выходного сигнала 200 кГц), В/Лк·с	10
Относительная средневкадратическая неравномерность выходного сигнала, %	€1,5
Относительная средневкадратическая неравномерность темнового сигнала, %	≤0,05
Максимальное напряжение на выводах, В	20
Температурный диапазон работы, °С	-50 ÷ +50

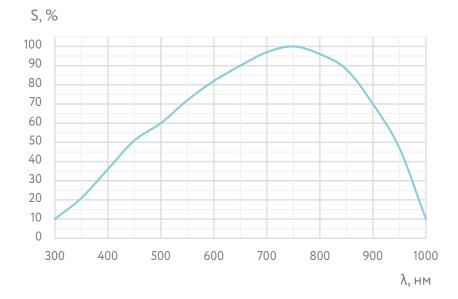
Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

Линейные ФППЗ с числом пикселей до 12000

Линейные ФППЗ имеют большой размер кристалла (до 10 см) и высокие параметры назначения, для обеспечения которых созданы современные высокоэффективные ПЗС регистры переноса, позволяющие переносить заряды на расстояние ~5 см с неэффективностью переноса не хуже 0,999998.

Ряд разрабатываемых изделий состоит из трех типов линейных $\Phi\Pi\Pi3-c$ числом пикселей 4K, 6K и 12K.


Применение

- системы наблюдения космического базирования;
- устройства регистрации малоразмерных объектов;
- факсимильные устройства высокого разрешения;
- спектрозональные системы.

Основные параметры	ФПМ 4К	ФПМ 6К	ФПМ 12К
Число пикселей	4096	6000	12000
Размер пикселя, мкм	6,5×6,5	6,5×6,5	6,5×6,5
Шаг, мкм	6,5	6,5	6,5
Диапазон спектральной чувствительности, нм	400÷900	400÷900	400÷900
Число выходных регистров	2	4	4
Число выходных узлов	2	4	4
Скорость вывода данных по каждому регистру, МГц	≤ 5	≤ 5	≤ 5
Электронный затвор, антиблюминг	+	+	+
Напряжение насыщения, В	≥ 2	≥2	≥2
Монохроматическая чувствительность, В/мк Дж/см²	≥2,5	≥2,5	≥2,5
Динамический диапазон, отн.ед.	≥4000	≥3000	≥3000
Коэффициент передачи модуляции на пространственной частоте равной f _N /2 по горизонтали, %	≽50	≽50	≥50
Среднеквадратическая неравномерность темнового сигнала, %	€2	€2	€2
Относительная неравномерность светового сигнала, %	≤±10	<±10	≤±10

Характеристика относительной спектральной чувствительности

• На базе прибора по требованию Заказчика может быть разработано комплексированное изделие, включающее устройство управления и обработки сигнала.

Позиционно-чувствительный датчик ФУР 42М

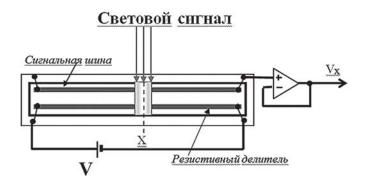
Датчик позиционночувствительный ФУР 42М бескорпусной с контактными площадками без кристаллодержателя, без выводов. Изготавливается на кремниевой КСДИ — структуре. Является комплектующим для использования в гибридных микросборках.

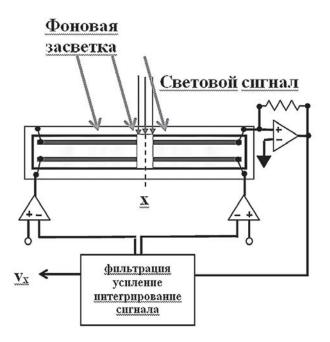
Принцип работы позиционно- чувствительного датчика основан на интегральном методе обработки оптического сигнала без сканирования всего поля зрения прибора.

Многолетний опыт использования многоэлементных фотоприемников для интегральных преобразований оптических сигналов позволил разработать оригинальные методики и создать ряд оптоэлектронных систем, способных решать проблемы выделения информативных признаков изображения, включая определение пространственных координат объектов, выделение линии горизонта, определение и классификация текстуры изображения и др.

Датчик позволяет определять в следящем режиме координаты светового пятна с разрешающей способностью не более 1 мкм (10⁻⁴ от поля зрения прибора). Способен работать в условиях фоновой засветки, превышающей мощность сигнала до 10⁴ раз.

Выходной сигнал датчика непосредственно пропорционален положению медианы оптического сигнала.


- устройства определения линейных координат;
- измерительные системы.


Основные параметры

Размер фотоприемной площади, мм	6×0,5
Разрешающая способность, мкм	<1
Пространственная нелинейность, %	<1
Темновой ток, A (U=10 B)	10 ⁻⁸ ÷10 ⁻¹¹
Минимально необходимая мощность светового сигнала (Wmin), Вт	10 ⁻⁹
Минимальное время определения координаты (при W=3·10 ⁻⁵ Bт), с	10 ⁻⁵
Диапазон спектральной чувствительности, нм	200÷1000
Положение максимума фоточувствительности (λ _{мах}), нм	700
Величина фоточувствительности при $\lambda_{\scriptscriptstyle{max}}$, A/Вт	0,3
Рабочее напряжение, В	5÷10
Рабочая температура, °С	-10÷+60

Свойства датчика:

- простое управление;
- пространственная линейность;
- высокая точность;
- широкий динамический диапазон;
- высокая надежность;
- высокая стабильность;
- длинная и узкая фотоприемная площадь.

Высокочувствительный гибридный телевизионный прибор на основе электрон-чувствительного ПЗС для ближнего ИК диапазона

Гибридный фотоприемник (ГФП) представляет собой электровакуумный прибор, содержащий в общем вакуумном объеме фотокатод и твердотельный элемент – электрончувствительную ПЗС (ЭЧПЗС) матрицу. Фокусировка – проксимити.

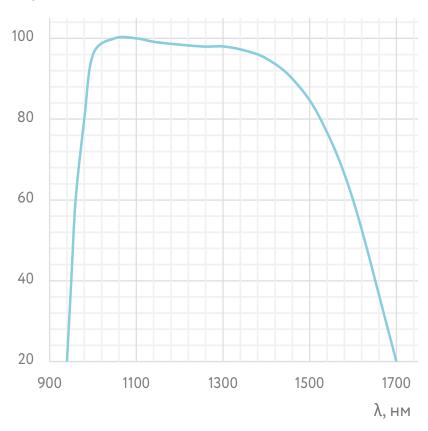
В ГФП для ближнего ИК диапазона используется фотокатод с тянущим электрическим полем (TE-фотокатод) на основе структуры InP/InGaAs, что обеспечивает высокую чувствительность в диапазоне $950 \div 1650$ нм.

В результате бомбардировки матрицы фотоэлектронами с энергией свыше 2-3 кэВ происходит генерация электроннодырочных пар в кремнии, что обеспечивает усиление в несколько сот раз.

Благодаря усилению сигнала в ЭЧПЗС матрице в несколько сот раз, ГФП будет иметь чувствительность на 1-2 порядка выше, чем твердотельные аналоги.

В ГФП весь сигнальный поток фотоэлектронов, вышедший из фотокатода, достигает матрицы, отсутствуют промежуточные преобразования сигнала. Это обеспечивает близкое к 1,1 значение шум-фактора. Кроме того, в ГФП отсутствуют волоконнооптические элементы, снижающие радиационную стойкость прибора.

58 AO «ЦНИИ «Электрон»


• Прибор рекомендован к применению в высокочувствительной малогабаритной телевизионной аппаратуре, системах наблюдения для летательных аппаратов и т.д.

Основные параметры

Рабочий диапазон спектральной чувствительности фотокатода, нм	950÷1650
Квантовый выход фотокатода в максимуме, %	2-10
Напряжение на фотокатоде, кВ	4-5
Размер чувствительной области, мм	13,1×9,8
Число пикселей матрицы ЭЧ ПЗС	768×580
Размер пикселя, мкм	17×34
Чувствительность, А/Вт	4-20
Пороговая облученность, Вт/пиксель (Вт/см²)	~2.10-13 (~3,4.10-8)
Диаметр прибора, мм	60
Высота прибора, мм	23

Характеристика относительной спектральной чувствительности

S, %

• На базе ГФП возможно изготовление ФПУ (фотоприемное устройство), включающего в себя гибридный прибор, источники питания и электронику для обработки сигнала.

Высокочувствительный гибридный телевизионный прибор на основе электрон-чувствительного ПЗС для **УФ диапазона и ФПУ** на его основе

Гибридный фотоприемник (ГФП) представляет собой электровакуумный прибор, содержащий в общем вакуумном объеме фотокатод и твердотельный элемент – электрончувствительную ПЗС (ЭЧПЗС) матрицу. Фокусировка – проксимити.

В результате бомбардировки матрицы фотоэлектронами с энергией свыше 3 кэВ происходит генерация электроннодырочных пар в кремнии, что обеспечивает усиление в несколько сот раз.

Благодаря усилению сигнала в ЭЧПЗС матрице в несколько сот раз, ГФП обеспечивает чувствительность на 1-2 порядка выше, чем твердотельные аналоги.

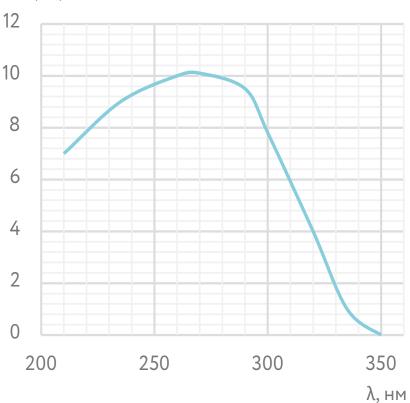
В ГФП весь сигнальный поток фотоэлектронов, вышедший из фотокатода, достигает матрицы, отсутствуют промежуточные преобразования сигнала. Это обеспечивает близкое к 1,1 значение шум-фактора, тогда как в фотоприемниках на основе ЭОПов с МКП, сочлененных с матрицей ПЗС, шум-фактор 1,6-2. Кроме того, в ГФП отсутствуют волоконнооптические элементы, снижающие радиационную стойкость прибора.

В гибридном приборе для УФ-диапазона используется CsTe фотокатод, что обеспечивает высокую степень солнечной слепоты, снижает потребность в фильтре видимого излучения.

62 AO «ЦНИИ «Электрон»

• Прибор рекомендован к применению в высокочувствительной малогабаритной телевизионной аппаратуре, системах наблюдения для летательных аппаратов и т.д.

Основные параметры


Рабочий диапазон спектральной чувствительности фотокатода, нм	200÷300
Квантовый выход фотокатода в максимуме, %	15–20
(спектральная чувствительность фотокатода в максимуме, мА/Вт)	(31-42)
Напряжение на фотокатоде, кВ	4-5
Размер чувствительной области, мм	13,1×9,8
Число пикселей матрицы ЭЧ ПЗС	768×580
Размер пикселя, мкм	17×34
Монохроматическая чувствительность на длинах волн 260÷270 нм, B/Bт/см²	1·10 ⁷
При облученности 2·10 ⁻¹³ Вт/пиксель (3,4·10 ⁻⁸ Вт/см²) и полосе пропускания 6,3МГц: – отношение сигнал/шум – глубина модуляции сигнала на мелких деталях (400 ТВЛ)	20-25 30-35
Пороговая облученность, Вт/пиксель (Вт/см²)	<7:10 ⁻¹⁶ (<1:10 ⁻¹⁰)
Диаметр прибора (в герметике), мм	60
Высота прибора, мм	23

• На базе ГФП возможно изготовление ФПУ (фотоприемное устройство), включающего в себя гибридный прибор, источники питания и электронику для обработки сигнала. Необходимое напряжение питания – 27 В. Выходной сигнал сформирован в цифровом виде. Габариты ФПУ (без объектива) 80×80×100 mm.

Характеристика спектральной чувствительности

S, $B/B\tau/cm^2 \times 10^6$

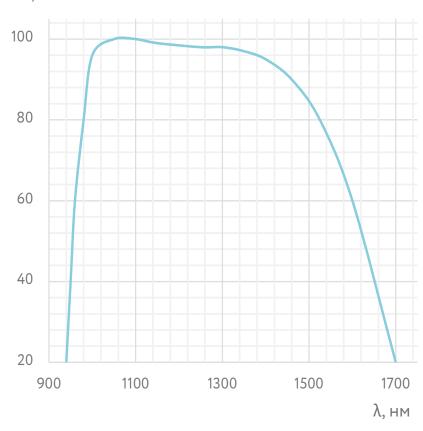
Гибридный многоканальный фотоприемник

Фотоприемник представляет собой гибридный двенадцатиканальный детектор с фотокатодом, чувствительным в ближнем ИК диапазоне.

Фотокатод — с тянущим электрическим полем (TE-фотокатод) на основе структуры InP/InGaAs, что обеспечивает высокую чувствительность в диапазоне $950 \div 1650$ нм.

В качестве анода используется кремниевая фотодиодная линейка, облучаемая с обратной стороны фотоэлектронами с энергией в несколько кэВ, с фронтом импульсной характеристики диодов менее 10 нс. Чувствительность любого канала – более 1 А/Вт.

- бортовые системы;
- лазерные локаторы;
- измерения лазерных импульсов в ИК диапазоне.

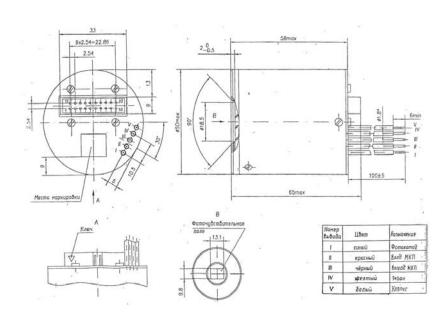

Основные параметры

Рабочий диапазон спектральной чувствительности фотокатода, нм	950÷1650
Общее число пикселей (диодов) линейки	12
Размер пикселя линейки, мм	2×0,2
Размер чувствительной области, мм	24×0,2
Напряжение на фотокатоде, кВ	≤ 7
Чувствительность на выходе диода, А/Вт	1-5
Фронт импульсной характеристики, нс	1,5-10

Перечень наиболее полных характеристик может быть представлен по запросу Заказчика.

Характеристика относительной спектральной чувствительности

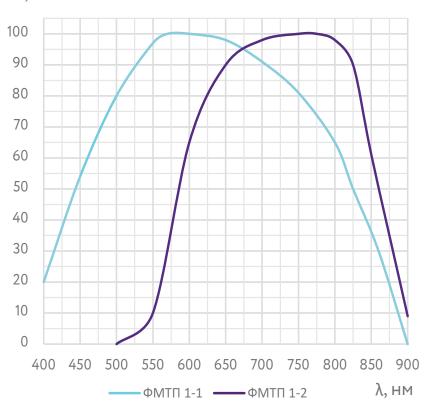
S, %



Высокочувствительные малогабаритные модульные телевизионные приборы ФМТП 1-1, ФМТП 1-2

Модульные высокочувствительные матричные телевизионные приборы ФМТП1-1 и ФМТП1-2 представляют собой сочлененный посредством прямого оптического контакта усилители яркости 2+ поколения с блоком фоточувствительной матрицы.

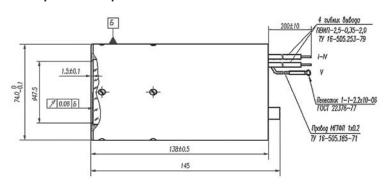
Габаритный чертеж

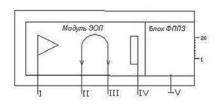


• сверхвысокочувствительные телевизионные камеры различного назначения.

Основные параметры	ФМТП 1-1	ФМТП 1-2
Размер входного изображения, мм	9,8×13,1	9,8×13,1
Число пикселей	768×580 (290)	768×580 (290)
Диапазон спектральной чувствительности, нм	400÷870	500÷900
Рабочая освещенность, лк	2.10-4	1.10-4
Разрешающая способность при рабочей освещенности, ТВЛ	500	500
Пороговая освещенность при разрешающей способности 200 ТВЛ, лк	2·10-6	1.10-6
Рабочий диапазон освещенности, лк	10 ⁻² ÷2·10 ⁻⁶	10 ⁻² ÷2·10 ⁻⁶
Отношение сигнал/шум при рабочей освещенности, дБ	18	18
Геометрические искажения, %	<0,5	≤0,5
Рабочая температура, °С	-40÷+40	-40÷+40

Характеристика относительной спектральной чувствительности




Сверхвысокочувствительные широкоформатные модульные телевизионные приборы ФМТП 3-1, ФМТП 3-2

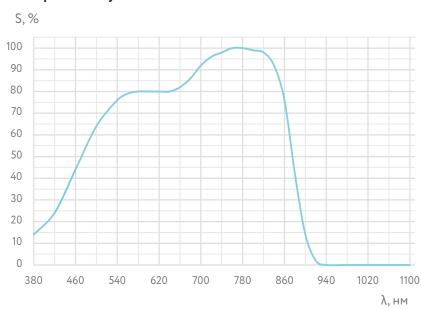
Сверхвысокочувствительный широкоформатный телевизионный прибор ФМТП разработан в двух модификациях ФМТП 3-1, ФМТП 3-2. ФМТП представляет собой модульный прибор, сочлененный посредством прямого оптического контакта волоконно-оптического фокона с одним или двумя усилителями яркости 2+ поколения и блоком фоточувствительной матрицы с кадровым переносом заряда.

Габаритный чертеж

Схема соединения электродов с выводами

Mogris 3011 Mogris 3012 5son 01113

ФМТП 3-1


ФМТП 3-2

сверхвысокочувствительные широкоформатные телевизионные камеры различного назначения, например, оптоэлектронные системы контроля космического пространства.

Основные параметры	ФМТП 3-1	ФМТП 3-2
Рабочий диаметр изображения, мм	40	40
Формат изображения, мм	24×32	24×32
Коэффициент масштабирования (масштабирующий фокон), м	2,44	2,44
Усилители яркости, поколение	2+	2++2+
Интегральная чувствительность фотокатода, мкА/лм	500	350
Число пикселей матрицы	768×580 (290)	768×580 (290)
Диапазон спектральной чувствительности, нм	380÷900	380÷900
Рабочая освещенность, лк	5·10 ⁻⁵	5·10 ⁻⁵
Разрешающая способность при рабочей освещенности, ТВЛ	450	450
Отношение сигнал/шум при рабоче освещенности	ей ≽6	≥10
Геометрические искажения, %	≤1	≤ 1
Пороговая освещенность при разрешающей способности 200 ТВЛ, лк	5·10 ⁻⁷	5·10 ⁻⁷
Рабочий диапазон освещенности, л	лк 10 ⁻³ ÷5·10 ⁻⁷	⁷ 10 ⁻³ ÷5·10 ⁻⁷
Рабочая температура, °С	-40÷+40	-40÷+40

Перечень наиболее полных характеристик может быть представлен по запросу Заказчика.

Характеристика относительной спектральной чувствительности

Комплексированные фотоэлектронные приборы

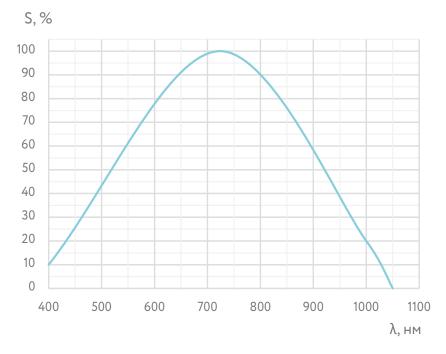
Фотоприемное устройство ФПУ-1024М

Фотоприемное унифицированное устройство (ФПУ) ФПУ-1024М изготавливают на базе ФППЗ, стойкого к ионизирующему излучению космического пространства (ИИКП), с числом пикселей форматом 1024×1024 соответственно для обеспечения считывания выходного сигнала.

В состав ФПУ входят: узел ФППЗ, узел управления и обработки сигнала ФППЗ, источник питания узлов фоточувствительной матрицы и корпус с электрическими разъёмами для подключения первичных источников питания, передачи управляющих сигналов от бортовой аппаратуры и цифрового видеосигнала.

ФПУ изготовлено для видимого и ближнего ИК диапазонов, обеспечивает повышенную точность и помехозащищенность оптико-электронных приборов астроориентации космических аппаратов (КА), угломерных приборов КА, повышенную дальность обнаружения целей в условиях повышенной радиации и сверхширокополосного электромагнитного воздействия средств радиоэлектронного подавления.

 $\Phi\Pi\Pi3$, входящие в состав $\Phi\Pi$ У, имеют секцию накопления и секцию памяти.


72 AO «ЦНИИ «Электрон»

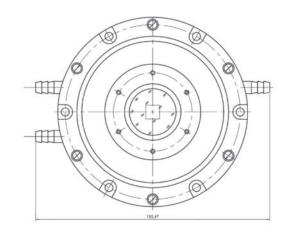
- космические аппараты различного назначения;
- объекты атомной энергетики;
- робототехника и системы технического зрения.

Основные параметры

Число пикселей	1024×1024
Размер пикселя, мкм	11×11
Размер фоточувствительной области, мм	16,18×16,18
Скорость вывода данных по каждому регистру, МГц	≤20
Разрешающая способность, ТВЛ	700
Выходной сигнал, цифровой, бит	≥12
Напряжение питания, В	27±10%
Диапазон спектральной чувствительности, нм	450÷1000
Напряжение насыщения ФППЗ, В	≥1,0
Интегральная чувствительность, приведенная к источнику типа A, B/(лк·c)	10÷15
Коэффициент передачи модуляции на отметке 500 ТВЛ по горизонтали,%	≥50
Среднеквадратическая неравномерность темнового сигнала по полю,%	≼ 4
Пороговая экспозиция (при времени экспозиции до 1 с), лк-с	≤2·10 ⁻⁵
Среднее значение темнового сигнала, мВ/с	≤ 4
Потребляемый ток (при включенном ТЭМ), А	≤1,0

Характеристика относительной спектральной чувствительности

Фотоприемное устройство ФПУ-1М


Основным фоточувствительным элементом ФПУ является охлаждаемый матричный ФППЗ с числом пикселей 1536×1536.

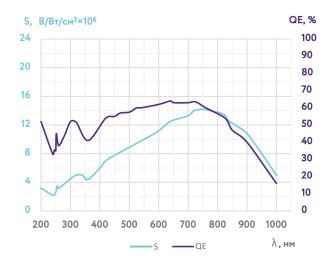

Данный ФППЗ — кремниевый матричный утоненный фоточувствительный прибор с кадровым переносом заряда, объемным п-каналом, подложкой р-типа.

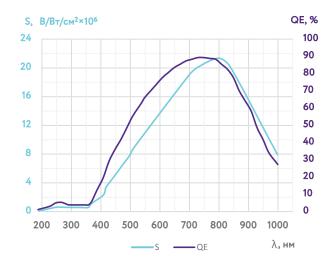
ФПУ-1М состоит из:

- кристалла ФППЗ;
- кристаллодержателя (основания);
- охлаждаемого корпуса с ТЭБ;
- съемного входного окна.

Габаритный чертеж

74 AO «ЦНИИ «Электрон»


- системы повышенной точности обнаружения малоразмерных объектов;
- телевизионная аппаратура с непрерывным и импульсным освещением в системах преобразования и обработки изображения;
- измерительные устройства.


Основные параметры

Число пикселей, шт.	1200×1200
Размер пикселя, мкм	11×11
Напряжение насыщения, мВ	>600
Заряд насыщения, тыс. электрон	>120
Динамический диапазон, отн.ед.	>2400
Квантовая эффективность в максимуме спектрального диапазона, %	>80°
Диапазон спектральной чувствительности, нм	300÷1000°
Темновой сигнал, мВ/с	<100
Относительная неравномерность темнового сигнала, %	<2
Относительная неравномерность светового сигнала, %	<10
Эффективность переноса по горизонтали, отн. ед.	>0,99995
Эффективность переноса по вертикали, отн. ед.	>0,99995
Термоэлектрическое охлаждение кристалла ФППЗ относительно внешней температуры, К	>50
Рабочая частота регистра, МГц	>1

^{* —} для модификации с повышенной чувствительностью в ИК области спектра

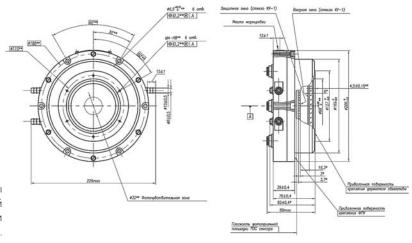
Примеры характеристик спектральной чувствительности

С повышенной чувствительностью в УФ

С повышенной чувствительностью в ИК

Фотоприемное устройство ФПУ-2М

Основным фоточувствительным элементом ФПУ является охлаждаемый матричный ФППЗ с числом пикселей 4096×4096.


Данный ФППЗ – кремниевый матричный утоненный фоточувствительный прибор с кадровым переносом заряда, объемным п-каналом, подложкой р-типа.

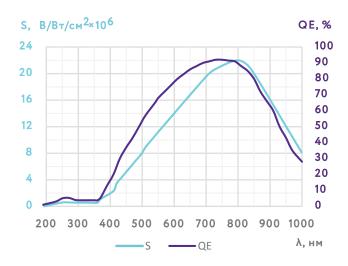
Данные приборы изготовлены по унифицированной технологии в соответствии с РАГС.463260.002 ТУ.

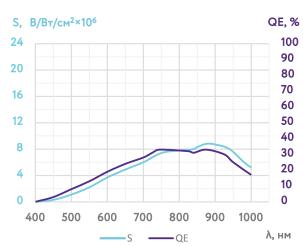
ФПУ-1М состоит из:

- кристалла ФППЗ;
- кристаллодержателя (основания);
- охлаждаемого корпуса с ТЭБ;
- съемного входного окна.

Габаритный чертеж

76 AO «ЦНИИ «Электрон»


- системы повышенной точности обнаружения малоразмерных объектов;
- телевизионная аппаратура с непрерывным и импульсным освещением в системах преобразования и обработки изображения;
- измерительные устройства.


Основные параметры

Число пикселей, шт.	4096×4096
Размер пикселя, мкм	11×11
Напряжение насыщения, мВ	>600
Заряд насыщения, тыс. электрон	>120
Динамический диапазон, отн.ед.	>2400
Квантовая эффективность в максимуме спектрального диапазона, %	>80°
Диапазон спектральной чувствительности, нм	300÷1000°
Темновой сигнал, мВ/с	<100
Относительная неравномерность темнового сигнала, %	<4
Относительная неравномерность светового сигнала, %	<20
Эффективность переноса по горизонтали, отн. ед.	>0,99995
Эффективность переноса по вертикали, отн. ед.	>0,99995
Термоэлектрическое охлаждение кристалла ФППЗ относительно внешней температуры, К	>30
Рабочая частота регистра, МГц	>1

 $^{^{*}}$ — для утоненного ФППЗ, освещаемого со стороны подложки

Примеры характеристик спектральной чувствительности

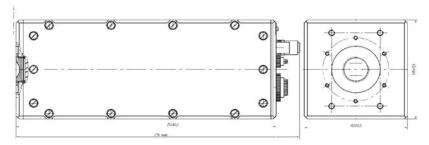
Для ФППЗ освещаемого со стороны подложки

Для ФППЗ освещаемого со стороны электродов

Солнечно-слепые фотоприемные модули ФПУ-4А, ФПУ-4П

ФПУ-4П и ФПУ-4А представляют собой фоточувствительные устройства с блоком управления и обработки сигнала.

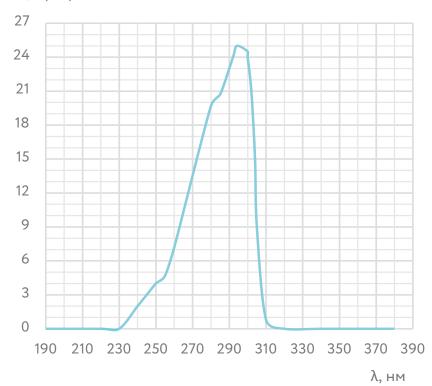
Цифровые высокочувствительные модули ФПУ-4П и ФПУ-4А предназначены для преобразования оптического изображения в УФ области спектра в телевизионный сигнал в широком диапазоне облучённости на входе.


ФПУ состоят из двухкаскадного усилителя на двух ЭОПах 2+ поколения, сочлененных через прямой волоконно-оптический контакт со специальной широкоформатной матрицей с кадровым переносом.

Для блокировки видимого диапазона спектра излучения использован комбинированный полосовой фильтр. В ФПУ-4А реализована возможность стробирования по электронному затвору входного ЭОПа. Регулировка усиления осуществляется изменением усиления двух ЭОПов.

- ФПУ-4 работает в различных режимах с автоматической и ФПУ поддерживает интерфейс USB 2.0 для ОС Windows 7,8.
- Диапазон рабочей облучённости на входе $\Phi\Pi Y$ от 10^{-12} до 10^{-6} Вт/см².

- астрономические наблюдения;
- регистрация звезд, спутников и других космических объектов;
- регистрация объектов в ночных условиях;
- оптоэлектронная локация;
- медико-биологическая аппаратура регистрации однофотонных событий;
- исследование люминесценции и флуоресценции;
- высокочувствительная микроскопия;
- обнаружение утечек электроэнергии на ЛЭП;
- регистрация ионизации газов и воздуха.


Габаритный чертеж

Основные параметры	ФПУ-4А	ФПУ-4П
Диапазон спектральной чувствительности с блокирующем фильтром, нм	230÷310	230÷310
Выходной сигнал при рабочей облученности $5 \times 10^{-9} \; \text{Вт/ см}^2$ на длине волны $280 \; \text{нм, MB}$	>100	>100
Отношение сигнал / шум при рабочей облученности, раз	>10	>10
Монохроматическая чувствительность на длине волны 280 нм, В·см²/Вт	>2x10 ⁷	>2x10 ⁷
Пороговая облученность на длине волны 280 нм, Вт/см²	0,5·10 ⁻¹⁰	0,5·10 ⁻¹⁰
Темновой сигнал, мВ/с	<100	<100
Число пикселей в ФППЗ	1024x1024	760×580 (290)
Размер фоточувствительной области, мм	9,8×13,1	9,8×13,1
Режим стробирования, нс	≥10	-
Постоянное напряжение питания модуля, В	27±1	27±1

Характеристика спектральной чувствительности

S, $B/B\tau/cm^2 \times 10^6$

ФПУ-4П выпускается в соответствии с РАГС.463340.001 ТУ

ФПУ-4А выпускается в соответствии с РАГС.463340.002 ТУ.

Дактилоскопический многофункциональный электронный сканер ДС21

Дактилоскопическая многофункциональная электронная система ДС21 выполнена в виде стандартных программных и аппаратных моду¬лей и предназначена для биометрической идентификации личности и характера человека, состояния его здоровья, считывания дактилоско¬пической информации и защиты информации, хранимой в памяти РС, от несанкционированного доступа.

Экспериментальный образец

Дактилоскопическая система с помощью дактилоскопа (дактилоскопического сканера ДС21) преобразует папиллярный рисунок кожи пальца пользователя в цифровой видеосигнал, подаваемый через USB порт (версия USB2.0). Программное обеспечение обрабатывает полученную информацию и осуществляет идентификацию пользователя и решает постав-ленные биометрические задачи в соответствии с предварительно занесенными в архив данными.

- научные и медицинские исследования;
- охранные системы;
- печать и идентификация биометрических удостоверений личности в виде пластиковых карт.

Достоинства

- Высокая разрешающая способность до 1500 точек на дюйм;
- Возможность определения поддельного дактилоскопического носителя;
- Считывание биометрической карты и живого пальца одним сканером;
- Высокая надежность и долговечность в широком температурном диапазоне – 45°C ÷ +60°C;
- Возможность применения в различных медицинских исследованиях;
- Возможность работы с различной частотой и разрешающей способностью;
- Поддержка различных биометрических, психологических и медицинских применений;
- Возможность использования в режиме детектора лжи;
- Поддержка режима объемного пульса;
- Поддержка технологии совместного радиационного и биометрического контроля.

Основные параметры

Габаритные размеры платы сканера, мм	50×74×8
Число пикселей	512×576
Размер фоточувствительной области, мм	9,2×14,0
Размер пикселя, (Г×В), мкм	18×24
Рабочая разрешающая способность, точек на дюйм	≥1000
Напряжение питания (USB порт), В	4,5 - 5
Быстродействие в режиме 512х576, к/с	≥10
Быстродействие в режиме 512х128, к/с	≥50
USB интерфейс	USB 2,0
Возможность чтения пластиковых карт	Да
Возможность включения спящего режима	Да
Возможность определения пульса	Да
Количество точек определения пульса	≥300000
Возможность применения для дозиметрических карт	Да

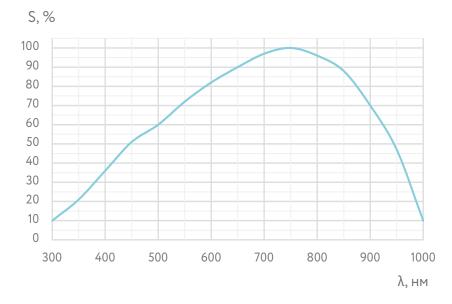
Перечень наиболее полных характеристик может быть представлен по запросу Заказчика.

Варианты применения для биометрических карт и дактилоскопии

Перспективные направления

Минимодуль линейной ПЗС камеры

Минимодуль линейной ПЗС камеры разработан для широкого применения в различных устройствах в качестве оптоэлектронного ядра (оптоэлектронной основы).


Основным отличием разработки являются функциональная гибкость, позволяющая проводить оптимизацию (адаптацию) его использования с цифровыми платформами стационарных ПЭВМ, планшетами, мобильными устройствами. Минимодуль связан с ПЭВМ посредством USB 2.0 (USB 3.0).

- профессиональные малогабаритные радиометры с контролем спектрального состава освещенности рабочих мест, в т. ч. для операторов ПЭВМ;
- персональные устройства контроля спектра комфортного освещения, в том числе определение мощности вредной компоненты УФ излучения светодиодных источников излучения;
- устройства прецизионного определения изменения координат местоположения лазерных лучей, в том числе в охранных системах регистрации вибраций.

Основные параметры

Количество пикселей	1000
Размер пикселя, мкм	13×500
Шаг пикселя, мкм	13
Диапазон спектральной чувствительности, нм	200÷1100
Габаритные размеры, мм	58×44×10
Динамический диапазон, отн.ед.	>5000
Типовая интегральная чувствительность приемника, В/Лк·с	25
Относительная световая неравномерность, %	±3
Число координатных отсчетов	4,8.104
Разрядность цифрового сигнала, бит	16
Субпиксельная точность определения координаты светового пятна, мкм	0,25
Температурный диапазон, °С	-50÷+50
температурный диапазон, С	-30-730
Частота считывания, кГц	500

Характеристика относительной спектральной чувствительности

Общая характеристика разрабатываемого прибора

Матричный ФПУ ближнего и среднего ИК диапазонов (с рабочими спектральными диапазонами 1,05 \div 1,7 мкм и 2 \div 5 мкм) с числом пикселей 1024х1024, размером фокальной плоскости \sim не более 30х30 мм 2 и высоким быстродействием (до 40 кадров в секунду) для использования в наземных и бортовых оптико-электронных средствах (ОЭС) системы контроля космического пространства (СККП), предназначенных для наблюдения за космическими объектами.

Зарубежный аналог

МФПУ типа Sofradir jupiter MW имеет следующие характеристики:

число пикселей 1280×1024;

- число выходов 4 8;
- размер пикселя 15×15 мкм;
- частота кадров 120 Гц.
- диапазон спектральной чувствительности 3,7 ÷ 4,8 мкм;

Матричный ФПУ ближнего и среднего ИК диапазонов с числом пикселей 1024×1024 на основе фоточувствительных диодов Шоттки

ИК МФПУ должен обладать следующими основными характеристиками:

Количество пикселей	1024×1024
Размер пикселя	30×30 мм²
Шаг пикселя, мкм	13
Диапазон спектральной чувствительности	1) 1,05÷1,7 мкм 2) 2÷5 мкм
Число выходов	4
Динамический диапазон, отн.ед.	>5000
Частота кадров (уточняется на этапе ЭП)	25 Гц
Пороговая чувствительность, Вт/пиксель – для диапазона 1,06÷1,7 мкм	
(при уровне фона не более 5·10 ⁻⁷ Вт/см²) – для диапазона 2÷5 мкм	1.1043
(при уровне фона 1·10 ⁻⁶ Вт/см²)	1.1042
Рабочая температура	75÷77 K
Частота считывания, Гц	1

Ожидаемые параметры

- матрица ФЧЭ на диодах Шоттки с форматом 1024×1024 пикселей;.
- корпус-криостат
 с входным
 окном для ввода
 оптического сигнала
 и вакуум-плотными
 электрическими вводами;
- система съема информации, обеспечивающая работу матрицы ФЧЭ

Характеристика разрабатываемой технологии

Разрабатываемая технология включает в себя выращивание гетерофотодиодных структур на основе InAs и его четверных твердых растворов n- и p- типов проводимости, нанесение металлических и диэлектрических покрытий с использованием методов фотолитографии, формирование массивов меза-структур, разработку методик контроля оптических и электрофизических характеристик полученных фоточувствительных матриц.

Целью работы является создание широкоформатной фотодиодной матрицы, обеспечивающей работу в режиме ограничения фоном при рабочих температурах $150 \div 170 \text{ K}$.

Широкоформатные фотоприемные матрицы с повышенной рабочей температурой будут использоваться для ФПУ, обеспечивающих повышение времени функционирования космических аппаратов и улучшение технических параметров аппаратуры.

Технология изготовления широкоформатной фотоприемной матрицы для космических систем

Результатом разработки и внедрения технологии будет:

- 1. Организация производства широкоформатных матриц на четверных твердых растворах А₃В₅для использования в составе электронных систем космического базирования.
- 2. Создание качественно нового уровня в технологии подготовки подложек для эпитаксии и в самой эпитаксии в отрасли в целом в РФ.
- 3. Выращивание эпитаксиальных слоев на MOCVD установках, обеспечивающих равномерность до 5%.
- 4. Освоение передовой технологии атомнослоевого осаждения пассивирующих покрытий (нанотехнология).

Ожидаемые параметры матрицы

- число пикселей 2000×2000:
- размер пикселя
 30×30 мкм;
- рабочая температура 150÷170 К.

Общая характеристика разрабатываемого прибора

Крупноформатная матрица ФППЗ 1024×1024 пикселей с повышенной чувствительностью к регистрации однофотонных сигналов и пороговой экспозицией (1-2)×10⁻⁶ лк за счет умножения электронов в дополнительном выходном регистре ПЗС и увеличения сигнального заряда до 1000 раз. Такие фотоприемники, сравнимые по чувствительности с ЭОП-2+ поколения, являются важнейшей основой построения перспективных высокоточных оптикоэлектронных систем обнаружения целей в условиях низкой освещенности.

Зарубежный аналог

e2v CCD201-20, Hamamatsu C9100-24B имеет следующие характеристики:

- число пикселей 1024×1024;
- размер пикселя 13×13 мкм;
- диапазон спектральной чувствительности 350÷1000 нм (CCD201-20);
- чувствительность 1,4 мкВ/е.

Разработка высокочувствительной матрицы ФППЗ с умножением электронов на кристалле для перспективных оптико-электронных систем обнаружения целей

Результатом разработки и внедрения технологии будет:

- 1. Увеличение надежности тракта получения и обработки видеоинформации в 2-3 раза.
- 2. Снижение массогабаритных характеристик тракта до 1,5-2 раз.
- 3. Уменьшение уровня наводок, улучшение электромагнитной совместимости.
- 4. Унификация массогабаритных и интерфейсных параметров.

Ожидаемые параметры матрицы

- число пикселей 1024×1024;
- размер пикселя 11×11 мкм;
- пороговая экспозиция (1-2)×10⁻⁶ лк;
- спектральный диапазон чувствительности 400÷1060 нм:
- максимальное усиление регистра 1000 раз.

Разработка фотоприемников на основе КМОП-матриц

Ожидаемые параметры матрицы

- число пикселей от 1024×1024 до 2048×2048;
- размер пикселя от 15×15 мкм до 9×9 мкм;
- частота кадров ≥100 Гц.

194223 РФ, г. Санкт-Петербург, пр. Тореза, дом 68, лит Р Тел./Факс: +7(812) 297-82-49 (доб. 394); 7(812) 297-04-03; +7(812) 297-04-03 (доб. 475)

e-mail:info@niielectron.ru

www.niielectron.ru